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The novel coronavirus, severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), invades a human cell via human angiotensin-
converting enzyme 2 (hACE2) as the entry, causing the severe
coronavirus disease (COVID-19). The interactions between hACE2
and the spike glycoprotein (S protein) of SARS-CoV-2 hold the key
to understanding the molecular mechanism to develop treatment
and vaccines, yet the dynamic nature of these interactions in fluctu-
ating surroundings is very challenging to probe by those structure
determination techniques requiring the structures of samples to be
fixed. Here we demonstrate, by a proof-of-concept simulation of in-
frared (IR) spectra of S protein and hACE2, that time-resolved spec-
troscopy may monitor the real-time structural information of the
protein−protein complexes of interest, with the help of machine
learning. Our machine learning protocol is able to identify fine
changes in IR spectra associated with variation of the secondary
structures of S protein of the coronavirus. Further, it is three to
four orders of magnitude faster than conventional quantum chem-
istry calculations. We expect our machine learning protocol would
accelerate the development of real-time spectroscopy study of
protein dynamics.
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The ongoing pandemic of COVID-19, a highly infectious dis-
ease caused by severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2), has posed tremendous threat to human health
and well-being by having affected tens of millions of people and
killed more than 1 million affected since December 2019 (1). It has
spurred enormous efforts in biological and biomedical research to
search for a solution to this fatal disease, which rapidly advance our
knowledge about it, including the identity of the pathogen (i.e.,
SARS-CoV-2), the genome sequence of the virus, and the struc-
tural basis for coronavirus recognition and infection (2–5). SARS-
CoV-2 recognizes human angiotensin-converting enzyme 2 (hACE2)
as the entry receptor to host cells using its surface spike glyco-
protein (S protein) (1). The interactions of S protein with hACE2
have been subjected to intensive investigations by several groups
(6–10), which laid the foundation for comprehensive understanding
of the invasion of SARS-CoV-2 into the human body at the atomic
scale (11), helps the search for intermediate hosts of the coronavirus
(12), and will guide the design of therapeutics and vaccines (11, 13).
Since the physiological environment in which S protein and hACE2
interact is always fluctuated due to the dynamic nature of water, a
dynamic picture of the interactions between them is needed for
precise mechanistic understanding that will inspire modulation and
application (14). Unfortunately, such information relies on real-
time tracking of protein conformations, which cannot be achieved
by powerful structure characterization techniques with atomic pre-
cision like X-ray diffraction and cryoelectron microscopy, because
they require fixed structures in samples. It motivates us to develop
alternative approaches to resolve the issue.
Recently, time-resolved infrared (IR) spectroscopy techniques

have realized successful monitoring of changes of secondary struc-
ture with time (15), signaling the feasibility of real-time observation
of protein dynamics in ambient conditions using spectroscopy.

However, to facilitate the monitoring of specific peptide frag-
ments in a secondary structure typically requires isotope labeling
(e.g., C=O in the amide of protein backbone is replaced with
13C=O or C=18O) in the preparation of samples, which is, un-
fortunately, tedious and expensive for systematic investigation on
conformation changes in protein dynamics. Therefore, it is desirable
to develop isotope labeling-free spectroscopy to accelerate structure
study of proteins for biological and biomedical sciences. To achieve
this goal, one needs to employ quantum chemistry calculations to
complete spectra signal assignment and structure determination. In
fact, it relies on computer simulations of various possible con-
formers to nail the job, which is, unfortunately, very expensive
for macromolecules like proteins. One of the biggest bottleneck
problems in spectroscopic measurement of proteins is lack of rapid
theoretical interpretation that can timely translate spectra signals
into structural information. As a result, it is nearly impossible for
an experimental spectroscopic study to monitor continuous struc-
tural changes associated with protein functions. Developing a cost-
effective spectra simulation protocol is a pressing task to advance
the real-time spectroscopy study of protein structures.
Machine learning (ML), a collection of statistics-based meth-

ods which gain prediction power from the learning of big data,
has emerged as a powerful toolkit to reduce the barrier to revealing
the structure−property relationship (16). It has been increasingly
popular in the study of molecules and materials, such as predicting
chemical reaction routes (17) and accelerating discovery of
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materials (18). Especially, neural networks (NN), a subclass of
ML algorithms, are well recognized for handling complex non-
linear problems. NN established a predictive model for desired
properties by iterative optimization of a complex high-dimensional
function in a virtually infinite space of parameters. This feature
makes it a transferrable tool for predicting protein spectra (19).
In this article, we developed and applied a cost-effective ML

protocol, to predict the IR spectra along with the kinetic process
of a COVID-2019 virus (SARS-CoV-2) protein binding to hACE2.
The efficient simulation of IR signals of different states of the
coronavirus associated with the changes in its secondary structure is
very encouraging for studying dynamic interactions between S

protein of SARS-CoV-2 and human ACE2 with the help of ML
techniques. This will enable a real-time spectroscopic monitoring of
protein structure evolution for this deadly virus, providing valuable
information for understanding its molecular mechanism, as well as
developing cures and vaccines. ML should provide a cost-effective
tool for simulating optical properties of SARS-CoV-2.

Results and Discussion
The technique details of this ML protocol have been elaborated
elsewhere (20). Here we just sketch the basic idea of the frame-
work (Fig. 1). We adopt a divide-and-conquer strategy to treat the
amide I vibrations of the whole protein. The vibration of a protein
is represented as a set of n oscillators associated with each peptide
bond in its backbone. The Frenkel exciton model is employed to
construct a vibrational model Hamiltonian (21), in which the di-
agonal elements are the frequency (ωi) of the ith amide I oscillator,
and the off-diagonal elements include the coupling coefficient
(Jij) between two oscillators i and j (Fig. 1). To obtain these matrix
elements, a protein is split into individual peptide bonds and di-
peptides. The values of ωi and μi

→ are predicted from an NN model
of peptide, that is, N-methylacetamide (22, 23). For off-diagonal
elements, there are two scenarios: Those coupling coefficients be-
tween two neighboring oscillators are computed using an NN model
of dipeptide, that is, N-acetyl-glycine-N′-methylamide (GLDP) (24,
25); those between a pair of nonneighboring oscillators are calcu-
lated with the dipole approximation (26) assuming that, given the
distances between oscillators are greater than the length of the
peptide bond,Jij = (1=4π«o)[(μi→ · μj

→=r3ij) − 3((μi→ · rij
→)(μj→ · rij

→)=r5ij)],
where «0 is the dielectric constant, μi

→ (μj
→) is the transition dipole

of peptide bond i (j), and rij is the vector connecting dipoles i and
j. After all matrix elements of the model Hamiltonian are obtained,
IR spectra are simulated using the SPECTRON program developed
by Mukamel and coworkers (27). We also make this ML protocol

Fig. 1. ML protocol for the IR spectra of proteins.

Fig. 2. ML-predicted IR spectra of SARS-CoV-1, SARS-CoV-2, SARS-CoV-1-hACE2, and SARS-CoV-2-hACE2. (A) Comparison of experimental (30) (black line) and
ML-predicted (red line: single crystal structure [PDB ID code 2AMQ]; blue line: average of 1,000 configurations) spectra of SARS-CoV-1. (B) ML-predicted IR
spectra of SARS-CoV-2 based on a single crystal structure (red lines, PDB ID code 6LU7) and 2,000 MD configurations (blue lines). (C) ML-predicted IR spectra of
SARS-CoV-1-hACE2 (PDB ID code 2AJF) during 10us MD simulation (contains nine trajectories; 1,000 snapshots for nos.1 to 8 trajectories, 334 snapshots for no.
9 trajectory). (D) Same as C but for SARS-CoV-2-hACE2 (PDB ID code 6M17). Intensity is scaled to have the same maximum intensity for each panel.
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available online to facilitate the development of experimental
spectroscopy of rapid protein IR spectroscopy prediction (28).
We first simulated the amide I IR spectra of SARS-CoV-1 and

SARS-CoV-2 using the ML protocol described in Fig. 1 by the
averages from 1,000 and from 2,000 snapshots, respectively (which
would be prohibitively expensive via direct quantum mechanics
computations). The simulation environment was water, which
serves as the solvent of protein solution. The real protein solution
contains more than protein and water molecules, but the specific
aim in this work is to investigate how our ML protocol accelerates
the simulation of protein IR spectra to facilitate the atomic-scale
understanding of structure changes associated with S protein of
SARS-CoV-2 binding to hACE2, not to understand impacts of
specific enviromental factors in solution on protein−protein com-
plex. Therefore, we made a necessary simplification of the protein
solution model and considered water as the only component other
than protein of interest in our model. For this reason, we used
molecular dynamics (MD) simulation trajectories of protein solu-
tions which only involve water as the environment. The structures
and trajectories of SARS-CoV-1 and SARS-CoV-2 are obtained
from MD simulations by ourselves and Komatsu et al. (29), re-
spectively. The good agreement of SARS-CoV-1 between our ML
predictions (average 1,000 snapshots) and experimental spectra
(30) is evident from the high Spearman rank correlation coeffi-
cients (ρ = 0.93) (31) (Fig. 2), which was widely used to measure
the agreement between the predicted and experimental spectra.
From the 10 microseconds (μs) MD simulation trajectories
(contain 10 trajectories; 1,000 snapshots for nos. 1 through 10
trajectories) obtained from Komatsu et al., we have chosen the
amide I IR spectra of the SARS-CoV-2 with this ML protocol by
average 2,000 snapshots in the first 2us for comparison, since the
results have converged on the considered number of snapshots

(SI Appendix, Figs. S1 and S2) (for the results of the remaining
8,000 snapshots, please see SI Appendix, Fig. S1). Then we pre-
dicted the amide I IR spectra of the SARS-CoV-2 with this ML
protocol (average 2,000 snapshots). As shown in Fig. 2, the dom-
inant peak of SARS-COV-2 has a 5 cm−1 blue shift compared with
SARS-COV-1 (SARS-COV-1: 1,658.72 cm−1, SARS-COV-2:
1,663.62 cm−1). This may be accounted for by SARS-COV-2 having
a larger portion of the β-turns content than SARS-COV-1 (Table
1), and β-turns possessing an amide IR signal of higher frequency
(32–34). Importantly, our ML protocol identified the fine difference
in amide I IR spectra associated with the difference between their
secondary structures, and it is four orders of magnitude faster than
conventional quantum chemistry calculations (Table 1).
Then we simulated the amide I IR spectra of SARS-CoV-1-

hACE2 (hACE2 in complex with the receptor binding domain of
spike protein from SARS-CoV-1) and SARS-CoV-2-hACE2 (hACE2
in complex with the receptor binding domain of spike protein from
SARS-CoV-2) by average 8,334 snapshots with our ML protocol
(Fig. 2). TheseMD simulation data were retrieved from the website of
D. E. Shaw Research (35). Each MD simulation is 10 μs and contains
nine trajectories (1,000 snapshots for nos. 1 to 8 trajectories, 334
snapshots for no. 9 trajectory). We also chose the averaged IR spectra
of the first trajectory (1st: 1,200 ns which contains 1,000 snapshots) for
comparison. From the average secondary structure content
analysis (by average 1,000 snapshots from no. 1 trajectory) by the
Stride program (36), the random coil content of RBD2-hACE2
was higher than that of RBD1-hACE2, and the β-turn content was
lower than that of RBD1-hACE2, which led to a 6 cm−1 red shift of
the dominant peak (32–34, 37) (RBD1-hACE2: 1,649.33 cm−1;
RBD2-hACE2: 1,643.41 cm−1) (Table 1). Again, the difference in
secondary structures between RBD1-hACE2 and RBD2-hACE2
is clearly characterized by our ML-based IR spectra simulation.

Table 1. Average secondary structure content (computed by Stride program) of various coronaviruses and comparison of the time
required for computing IR spectra of a single structure by Density Functional Theory (DFT) and our ML model in the framework of
vibrational exciton model

β-Strands (%) β-Turns (%) α-Helix (%) 310-Helices (%) Coil (%) Bridge (%) DFT (s) ML (s)

SARS-COV-1 30.1 19.9 23.9 2.5 21.0 2.5 1,165,320 70.69
SARS-COV-2 28.3 25.5 20.3 2.6 20.4 2.9 1,173,000 72.68
SARS-CoV-1-hACE2 7.6 23.2 45.2 3.9 18.0 2.2 1,482,120 100.80
SARS-CoV-2-hACE2 7.0 21.2 45.6 3.2 21.8 1.2 1,474,440 98.68
Trimeric SARS-CoV-2 S protein (closed state) 30.7 25.6 18.0 1.9 21.9 1.7 6,068,100 5,295.60
Trimeric SARS-CoV-2 S protein (open state) 30.6 25.1 18.7 1.9 22.1 1.6 6,068,100 4,613.40
RBD/hACE2 binding (S1 state) 32.3 22.1 9.4 7.8 27.7 0.8 370,440 20.64
RBD/hACE2 binding (S2 state) 31.8 21.5 12.1 6.2 27.3 1.2 370,440 20.64
RBD/hACE2 binding (S3 state) 33.5 25.5 12.1 6.2 21.5 1.2 370,440 20.64
RBD/hACE2 binding (S4 state) 33.0 21.4 9.4 7.8 27.3 1.2 370,440 20.64
RBD/hACE2 binding (S5 state) 33.0 21.9 11.6 4.7 27.6 1.2 370,440 20.64

All reported times refer to calculations on an eight-core Intel(R) Xeon(R) CPU (E5-2683v4 at 2.1 GHz). DFT, Density Functional Theory.

Fig. 3. ML-predicted IR spectra of Trimeric SARS-CoV-2 S protein. (A) Closed state (PDB ID code 6VXX). (B) Open state (PDB ID code 6VYB).
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The trimeric SARS-CoV-2 S protein has two distinctive states:
closed state and open state (6). Intriguingly, they have substantially
different secondary structures. From the 10 μs MD simulation
trajectories (contain nine trajectories; 1,000 snapshots for nos. 1 to
8 trajectories, 334 snapshots for no. 9 trajectory) obtained from the
website of D. E. Shaw Research, we have simulated the amide I IR
spectra of the trimeric SARS-CoV-2 S protein with closed and
open states by using 800 snapshots in the first trajectory for com-
parison. (For the results of remain trajectories, please see SI Ap-
pendix, Fig. S3.) It is noticed that the dominant peak of the trimeric
SARS-CoV-2 S protein in the open state has a 3 cm−1 red shift
compared with closed state, which coincides with the secondary
structure content difference (the β-turn of the open state is lower
but the coil content is higher than closed state (33, 37, 38) (Fig. 3
and Table 1).
Finally, we investigated the dynamics of S protein of SARS-CoV-2

interacting with hACE2 interaction, using our ML protocol. Five
representative structures were selected from D. E. Shaw Research
(35). We predicted the IR spectra of S protein in different states
during the combination process by ML and calculated the average
secondary structure components in each state (Fig. 4 and Table 1).
The identified five states are of chemical interest for understanding
the process of dynamic interaction between the S protein of
SARS-CoV-2 and the hACE2. They are five successive states
used for describing such a process. Specifically, we have identified S1
to S5 states based on the trajectory of accelerated weighted en-
semble MD simulations (source: D. E. Shaw Research) of 9,072 ps
duration. Specifically, S1 denotes t = 0 ps in the MD simulation; S2:
t = 1,008 ps; S3: t = 3,931.2 ps; S4: t = 4,838.4 ps; and S5: t =
7,056 ps. From the S1 to S2 state, the IR spectra has a 2.57 cm−1

blue shift. The analysis of the average secondary structure con-
tent showed that the main change from S1 to S2 was the in-
creased content of α-helix which led to a blue shift (33, 37, 38).
From S2 to S3, the IR spectra also has a 6 cm−1 blue shift cor-
responding to the averaged secondary structure content change
(33, 37, 38) (S2 to S3: β-turns increased while coil decreased).
From S3 to S4, the IR spectra has a 5 cm−1 red shift which is
caused by the β-turns and α-helix decreasing while coil content
increased (32, 34, 37, 38). From S4 to S5, the IR spectra has a
4 cm−1 blue shift which is caused by β-turns and α-helix increasing
(33, 34). The changes in the IR spectra of the S protein under
different states associated with the changes in the secondary
structure are correctly captured by our ML protocol. We have
further investigated the amide I signals of different SARS-CoV-2

spikes (S proteins), as shown in SI Appendix, Fig. S4; from Sa to
Sb, the dominant peak of spectra has a blue shift, which corresponds
to the increase of β-turns and α-helix and the simultaneous decrease
of coil (SI Appendix, Table S1). From Sb to Sc, the dominant peak
of spectra has a red shift, which corresponds to the decrease of
β-turns and α-helix and the simultaneous increase of coil (SI Ap-
pendix, Table S1). The structural change is clearly captured by the
change of spectra (SI Appendix, Fig. S4). This supplementary result
suggests that our ML protocol can help spectroscopy experiments
track structural changes of proteins; we think our method provides a
promising route for studying real-time dynamics regarding to the
interactions of SARS-CoV-2 and human ACE2.

Conclusions
In conclusion, we have proposed a cost-effective ML protocol for
predicting amide I IR spectra of SARS-COV-2 spike protein. The
change in secondary structure of coronavirus can be clearly captured
by our ML protocol, indicating its potential for monitoring of real-
time interactions between SARS-CoV-2 and human ACE2. ML
technique significantly accelerates the simulation of IR spectra of
protein complexes, crucial for developing time-resolved IR spectros-
copy techniques for studying dynamic protein−protein interactions.

Methods
MD simulations for SARS-CoV-1 (PDB ID code 2AMQ) were performed with
the GROMACS package (39) and the OPLS-AA force fields (40). Electrostatic
interactions were treated by the Particle mesh Ewald method, and Coulomb
interactions were truncated at 12.0 Å. Energy minimization was performed
for 50,000 cycles for each protein. Thereafter, an equilibration process in
isothermal-isobaric (NPT) ensemble with an integration time step of 2 fs ran for
0.5 ns (40). Production dynamics were performed for a period of 2 ns in the NPT
ensemble at 300 K while maintaining pressure at 1 atm. One thousand con-
figurations were extracted with a 2-ps interval for calculating the IR spectra.

Data Availability.All study data are included in the article and SI Appendix. All
Protein Data Bank (PDB) ID code information is mentioned in the article
(2AMQ, 6LU7, 2AJF, 6M17, 6VXX, 6VYB).
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